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Abstract. Calder6n determined a method to approximate the conductivity a of a con-. 
ducting body in Rn (for n > 2) based on measurements of boundary data. The approx- 
imation is good in the L. norm provided that the conductivity is a small perturbation 
from a constant. We calculate the approximation exactly for the case of homogeneous 
concentric conducting disks in R2 with different conductivities. Here, the difference in 
the conductivities is the perturbation. We show that the approximation yields precise 
information about the spatial variation of a, even when the perturbation is large. This 
ability to distinguish spatial regions with different conductivities is important for clinical 
monitoring applications. 

1. Introduction. In an elegant short paper [2], Calder6n discussed the problem 
of determining an approximation to the electrical conductivity a inside a bounded 
domain B in Rn, for n > 2, from electrical measurements made on the surface S 
of B. 

Calder6n gave an explicit method for finding an approximation to a from data 
measured on S when a = 1 + r, and 117110 is small. He proved that the method 
yields an approximation to a smoothed version of r, whose error is 0(I17nIIa ) for 
some a with 1 < a < 2. 

We show for a specific example that Calder6n's method can yield precise spatial 
information about a when 11771100 is not small, even though the method does not 
yield a good approximation to a in any Lp norm. 

This specific example is of interest in the design and evaluation of electrical 
impedance imaging systems [1], [9]. These systems have made qualitative images 
of conductivity changes inside living bodies using algorithms, some of which [11] 
are in theory, if not in practice, closely related to Calder6n's. 

In clinical monitoring applications it is not always necessary to display recon- 
structions that are accurate in Lp norms. One may want only to distinguish two 
tissues clearly, or one might be interested only in how much blood or gas passes 
through some local region in a given time. For such applications, it is sufficient 
to provide the observer with rapid reconstructions that distinguish regions whose 
properties, such as conductivity, may differ greatly. A simple linearization, such as 
Calder6n's, is fast and, as seen in this example, sometimes may satisfy the require- 
ment above. 
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The reader interested in learning more about the theory and algorithms that 
have been applied to this problem can profitably consult [3], [6], [7], [8], [10], [12], 
[13], [14]. 

In Section 2 we derive Calder6n's approximation formula. The approximation 
formula can be evaluated explicitly for the case of homogeneous concentric disks 
in R2 with different conductivities. We exhibit this formula in Section 3 and show 
that the approximation gives the exact spatial variation of the conductivity. The 
details of the calculations are presented in Section 4. 

2. Calder6n's Method. We present a slightly different formulation of Cal- 
der6n's method for determining an approximation to the conductivity a inside a 
body B from measurements on its surface S. Here, a is a small perturbation from 
a constant conductivity on B: a = 1 + r, where t7 is small. We assume also that t7 
is zero on a neighborhood of S. 

Let u(p) denote the electrical potential at a point p inside B and j(p) the current 
density applied at the point p on the surface S. Then 

V * (aVu) = 0 in B, 

I> =3 0on S, 

where M denotes the outward unit normal to S. The current density j must satisfy 
the compatibility condition 

fj(p) dS = 0. 

Also, since u is defined only up to an additive constant, we assume that it is 
normalized by 

fu(p) dS = 0. 

The inverse boundary value problem is then to determine a from the boundary 
mapping R that takes applied current densities j into measured voltages u = uls. 
Physically, the inverse problem can be stated as follows. Apply all possible currents 
to S and measure all resulting voltages on S. From this boundary data, determine 
a in B. 

If t7 is small, then u(p) = uo(p) + 0(n7), where uo satisfies 

V2uO 0= in B, 
09Uo 

a onS. 

For any ( E R', introduce the auxiliary potential v(p) = exp(-i2 * p), where 
p E R' andz=2( +ie'), z =2(-ie'). Here, c' denotes any vector in R' 
that is perpendicular to ( and has the same length; that is, 

e e=I6I2=41.41 and 0. 

If we take j(p) = -iz * M exp(-iz p), then 

V * (oVu) = 0, 

V2v = 0 
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in B, and 

a9 = -iz zvexp(-iz -p), 5a = -z - vexp(-i2 P) 

on S. Integration by parts and the divergence theorem yield 

f nVu Vv dpO | U u )v dS. 

The right side of this equation can be determined from surface measurements alone; 
we denote it by C((; r). Then 

(2.1) C(;9 )-f (V U 09) dS = nVu Vvdp. 

If t7 is small, then u(p) = exp(-iz * p) + O(t7), so that 

) = lB ?1(p)(-II1) exp(-i_ p) dp + 0(172). 

Calder6n's method is the following. Neglect the 0(rq2) term to obtain the approx- 
imation 

'B r(p) exp(-i* p) dp 
2 

_ C((; 1). 
I~I2 

Since r is assumed to be zero in a neighborhood of S, it can be extended smoothly 
to be zero everywhere outside of B. This leads to an approximate formula for the 
Fourier transform of r: 

r1(()I| r1(p) exp(-ie * p) dp 
Rn 

=I'B q(p) exp(-if * p) dp t _ 2 C((; r) 

Finally, we obtain the reconstruction formula for the approximation -y to r as an 
inverse Fourier transform: 

(27rn I~ ( 112 )C((; r1) exp(ie * p) df 

(21r)~ IRn t1() exp(i* p) df = r1(p) 
There is no reason to believe that this formula yields a "good" approximation 

to r when 1jrjll00 is large. In the next section we show exactly what it yields for 
simple examples, including those for which r- oo, i.e., a perfect conductor. 

3. A Simple Example. Let D denote the unit disk in R2, and let S denote its 
boundary, the unit circle. For a > -1 and 0 < r < 1, define the perturbation r by 

f a, for IPI < F, 
q(p) l , for I'< 1pI < l 

The body then consists of two homogeneous concentric disks: the inner disk of 
radius P has conductivity 1 + a, and outside this disk the conductivity is 1. 

We compute explicitly both C((; q) and the Calderon approximation -y to r 
defined by 

= (2r)2 fR2 (- 2) C((; ,) exp(i p) d~. 
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In particular, we show that 

(3.1) C(; t7) = 4ir 1 + 4P2 (n!)2 

and 
00 

(3.2) ?y(p) = 2,u E (-,u)mXrm+1 (p) 
m=O 

where 
a 

2+a 
and Xb denotes the characteristic function of the disk of radius b. We note that 
-1 < a < oo implies that -1 < it < 1. 

The expression (3.2) for -y is easy to interpret: for any nonzero p, -y is a finite 
sum of characteristic functions of disks whose radii decrease geometrically. The 
first term is (a multiple of) the characteristic function of the inner disk IpI < r 
on which q is nonzero. Consequently, -y vanishes where q does, and the spatial 
variation of q is captured exactly by -y. 

For k > 0 and pk+2 < IpI < rk+1, we have 

7y(P) =2p E (-,,)m = 2p - 

m=O 

a ( a (-a 
1 + a ( 2 + a) ) 

Therefore, -y = q + 0(a2) when lal is small. 
On the other hand, when a is large, say a = oo (so that it = 1), then 

?(p) = 2Xr(P) - 2Xr2(p) +- * 

Thus, -y alternates between the values 0 and 2 in the rings rk+1 < 1pi < rk for 
k > 0. We leave to the reader to decide whether a graphic display of a smoothed 
approximation to this -y could be used to distinguish a highly conductive region 
from its background. 

4. An Explicit Calculation. Here we outline the calculation yielding Eqs. 
(3.1) and (3.2). 

Using polar coordinates p = r(cos 0, sin 0) on R , we can obtain Fourier series 
expansions for the normal derivatives on the boundary of the unit disk D: 

00 

=-iz v exp(-iz p) = Z(ancos n0 +bn sin n0), 
n=1 

= -iz M exp(-iz p) = E (a'cos n0 + b sin n0) 

n=1 

By solving the corresponding Neumann problems for 

V . (avu) =0, 

V2v = 0, 



COMMENT ON CALDER6N'S PAPER 557 

we obtain 

00 

u(1, ) = E pn(an cosnO + bn sinnO), 
n=1 

00 

v(1, ) = E p' (a' cosnO + b' sinnO), 
n=1 

where 
1 (1-uP2n o 1 

P=n 1 + 4in J Pn=- 

Hence, for n1, 2,... 

an = I| exp(-iz p)cosnOdO, 
(4.1) Pn 4 

a i = | exp(-i2 p)cosnOdO, 

and replacing cos nO by sin nO yields the formulas for bn and bY. 
The orthogonality of the trigonometric functions yields 

00 

C((; r7) = ir E n (ana' + bnb') 
n=1 

where 

6n -PO =2 (/ n n k+ uP2n 

It follows from Eq. (4.1) that if ( = II(cos a, sin a), then 

1 (-__il_ )n 
an = exp(-ina) n 

bn = ian, 

a = To exp(+ina) 

bn =-iacn4 

Thus, 
00 

n ( l 
11) 

C((; t1) =4irpu E 4 ~~t n0 
n=1 

1 + sin(n!)2 

Since 0 < r< 1 and IuI < 1, we can expand the factor (1 +,ur2n)-1 in a geometric 
series and interchange the order of summation to obtain 

00 00 nr2m+21g12 n 

(4.2) C(~; q) = 4irpu 
E 

(_,~)m E 
n 

____ 

m=O n1 (n!)2 ) 
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Before evaluating the inverse Fourier transform, we observe that 

Xb(()-f Xb(P) exp(-if p) dp 
R2 

rb r+ r 

= jb / exp(-ij Ifr cos(O - a))r dO dr 
o -r 

b +7r 

= fb f exp(-iI Ir cos O)r dO dr 

00 
(_1j1) kif rk+lJ dr 

+ 
Cosk0d 

k=O 7 

E (-ijkI)k bk+2 0, if k is odd, 
= ; k! k + 2 27r (kk2) 2-k if k is even, k=O kI 

-1 b21E12\m b2 m+ 1 
=27rE V 4 2 ((m+ 1)!)2 

m=O 
4 

47r E 
0 

b21l 12 n n 

lel E 4 J(n!)2' 

Then, from Eq. (4.2), we obtain 

002 

C(( t1 = 8 E(-H (-2 )Xrm+l (0- 
m=O 

Finally, since 

=Y (2r)2 fR2 (-(P) C(.; r) exp(i- p) de, 

and 

Xb(P) = (2ir)2 f kb(') exp(i p) dp, 

we obtain 
00 

-y(p) = 2,u E (-1)mXrm+ (p)W. 
m=O 

5. Conclusion. We have shown that if infinitely many precise measurements 
could be made, then a centered circular inhomogeneity inside a larger circular body 
could by "imaged" and precise knowledge of its radius obtained by Calderon's 
method, even if its conductivity differed greatly from the background. The image 
would in general not be close in Lp to the actual conductivity distribution. 

We do not study here the more complicated behavior arising from a conduc- 
tivity distribution with several discontinuities, nor do we consider the numerically 
important question of the stability of this method [4]. 
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